# What strategy would give the best chance of success?

359 views

Three people enter a room and have a green or blue hat placed on their head. They cannot see their own hat, but can see the other hats.

The color of each hat is purely random. All hats could be green, or blue, or 1 blue and 2 green, or 2 blue and 1 green.

They need to guess their own hat color by writing it on a piece of paper, or they can write "pass".

They cannot communicate with each other in any way once the game starts. But they can have a strategy meeting before the game.

If at least one of them guesses correctly they win \$50,000 each, but if anyone guess incorrectly they all get nothing.

What strategy would give the best chance of success?

(Hint: 100% chance of success is not possible.)

posted Apr 8, 2014

In this game at least two person will have the same color cap.
Before starting the game they will decide: the person who gets the other two, having the same color cap, will start first. and write on paper as "pass".
Second person will see the cap color of third person and write it on paper(either blue or green). Third person will do the same.
Now since both(second & third) have same color cap they both are winner.

Similar Puzzles

Alpha and Beta are playing bets. Alpha gives \$10 to Beta and Beta deals four card out of a normal 52 card deck which are chose by him completely randomly. Beta keeps them facing down and take the first card and show it to Alpha. Alpha have a choice of either keeping it or to look at the second card. When the second card is shown to him, he again has the choice of keeping or looking at the third which is followed by the third card as well; only if he does not want the third card, he will have to keep the fourth card.

If the card that is being chosen by Alpha is n, Beta will give him . Then the cards will be shuffled and the game will be played again and again. Now you might think that it all depends on chance, but Alpha has come up with a strategy that will help him turn the favor in his odds.

Can you deduce the strategy of Alpha ?

+1 vote

Distance between the towns A and B is 1000 miles. There is 3000 mango's in A, and the mango's have to be delivered to B. The available car can take 1000 apples at most. The car driver has developed an addiction to mango: when he has mango aboard he eats 1 mango with each mile made. Figure out the strategy that yields the largest amount of mango's to be delivered to B.

+1 vote

There is a prison with 100 prisoners, each in separate cells with no form of contact. There is an area in the prison with a single light bulb in it. Each day, the warden picks one of the prisoners at random, even if they have been picked before, and takes them out to the lobby. The prisoner will have the choice to flip the switch if they want. The light bulb starts in the Switched off position.

When a prisoner is taken into the area with the light bulb, he can say "Every prisoner has been brought to the light bulb." If this is true all prisoners will go free. However, if a prisoner chooses to say this and it's wrong, all the prisoners will be executed. So a prisoner should only say this if he knows it is true for sure.

Before the first day of this process begins, all the prisoners are allowed to get together to discuss a strategy to eventually save themselves.

What strategy could they use to ensure they will go free?