**4028/2015**

Si=a/(1-r) - the formula for sum of infinite geometric series, where- a=first term, r=common ratio

a/(1-r)=2014 --------> (1)

a^2/(1-r^2)=2014 --------> (2)

(1)/(2) => a(1-r)/2014/(a^2/(1-r^2))=2014/2014 => a/(1+r)=1 => a=1+r => r=a-1 --------> (3)

if we put (3) into (1), then

a/(1-(a-1))=2014 =>a/(2-a)=2014 => a=2014*(2-a) => 2015a=4028 => **a=4028/2015**