# If n is a good number, what is the minimum number of divisors that n^2 has?

54 views

We call a positive integer a "good number", if the product of all its divisors equals its cube.

For example, 12 is a good number, because the divisors of 12 are 1, 2, 3, 4, 6, 12, and 1*2*3*4*6*12=1728=12^3.

If n is a good number, what is the minimum number of divisors that n^2 has?

posted Oct 29, 2015
Looking for solution? Promote on:

Similar Puzzles
+1 vote

We are given a positive integer N. Two of its positive divisors are chosen and the differences between N and these two divisors are 270 and 280 respectively.

Find the number of possible value(s) of N?

+1 vote

N has precisely 10 positive divisors.
N has precisely 15 positive divisors.
N has precisely 20 positive divisors.
N has precisely __ positive divisors.

The sum of all digits of a 5 digit number is equal to the number of two digit formed by using the ten thousands and hundreds place digit in order.
If five digit number has 1, 2 , 3 & 4 and no digit is repeated in the number, then What are the total number of possible number?

``````Number    Number of positive divisors